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ABSTRACT 

We prove that a locally faithful, isometric action of SLn(R) ~< R n on 
a connected Lorentz manifold must be a proper action. This provides 
an essential step toward classifying nonproper isometry groups of non- 
compact Lorentz manifolds. 

1. I n t r o d u c t i o n  

In [AS97a] and  [AS97b], we gave a comple te  classif icat ion up to local  isomor- 

ph i sm of the  Lie groups tha t  can appea r  as s imply  connected  i somet ry  groups 

of compac t  Lorentz  manifolds.  The  same classif ication was achieved essent ia l ly  

s imul taneous ly  by A. Zeghib ([Zeghib95b] and  [Zeghib95a]). In  this  paper ,  we 

take  up the  inves t iga t ion  of isometr ic  group act ions  on noncompact Lorentz  man-  

ifolds. We consider  ac t ions  t ha t  have nontr iv ia l  dynamics  in the  sense t ha t  the  
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action is nonproper. In [Kowalsky96], N. Kowalsky investigated nonproper iso- 

metric actions of simple Lie groups on Lorentz manifolds, and made several fun- 

damental  discoveries. As a first step toward studying isometric actions of general 

nonsimple groups, we consider the special case SLn(R) ~< R", n _> 3. In other 

papers ([Adams98a], [Adams99a], [Adams99b], [Adams99d]), we use the tech- 

niques developed here to study more general situations. One may hope, using 

these techniques, to give a list of the connected Lie groups that  admit  a non- 

proper, faithful isometric action on a connected Lorentz manifold. (See Theorem 

1.1 and Theorem 1.2 of [Adams99d].) 

Here, we prove (Theorem 10.1) that a locally faithful action of 

SLn(R) ~< R n, n >_ 3, by isometric transformations of a connected Lorentz 

manifold M must be a proper action. 

Note that  if A is a Lie group and if there is an isometric action of Aut(A) ~ D< A 

on a Lorentz manifold such that  the restriction to A is nonproper, then any 
connected Lie group with a normal subgroup A' isomorphic to A admits an 

isometric action such that  A' is nonproper. This fact is a consequence of Corollary 

4.4 in [Adams99c]. Since Aut(R '~) is GL(n, R), it is reasonable, for any positive 

integer n, to ask whether GL(n, R) ~ D< R '~ has an action such that R n is nonproper. 

If there were such an action, then the restriction to SL(n, R) ~< ~'~ would still be 

nonproper, and this paper shows that  that  is impossible, for n _> 3. In [AS99], we 

refine our methods to extend this result to conformal actions. By Theorem 1.1 of 

[Adams99d], it follows that  any locally faithful isometric action of SL(2, R) ~< R 2 

on a connected Lorentz manifold is proper. The methods used in [Adams99d] 

are far more delicate than the ones used here. 

We proceed to an outline of the proof that  a locally faithful action of G = 

SLn(R) ~< R n, n _> 4, by isometrics of a connected Lorentz manifold M is proper: 

We suppose that  the action of G on M is nonproper, and argue to obtain a 

contradiction. 

Let F be the natural  equivariant map from M to the vector space of symmetric 

bilinear forms on g. Following ideas of [Kowalsky96], we use F to establish that  

R '~ is lightlike at some point m0 E M, so that some codimension one subgroup 

S in R" must stabilize m0. 

On the other hand, the Adjoint action of R '~ on g/R'* is trivial, and so preserves 

all symmetric  bilinear forms. As a result, there are many Rn-invariant symmetric 

bilinear forms on g whose kernel contains R n. Any of these forms will give rise 

to a G-invariant form on g/R".  Consequently, the study of F cannot be used to 

prove that  any element of sin(R) is lightlike at any point of M. In particular, it 
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cannot establish that  any element of SLn (R) stabilizes a point. 

To proceed, we use a new idea: Let d := d i m M  and no := d imS.  The action 

of G on M gives, for every element of g, an isometric Killing vector field on M. 

We use 1-jets of these vector fields (viewed in exponential normal coordinates) 

to construct a Lie subalgebra of so(l ,  d -  1) that admits a Lie algebra surjection 

onto S[,o(R ). As n _ 4, we have no = n - 1 _> 3, so the split rank of s[no(R) 

is greater than the split rank of so(l ,  d - 1), giving a contradiction. A slightly 

improved version of this argument which works for n _ 3. 

ACKNOWLEDGEMENT: We appreciate the careful reading of the referee. The 

first author would like to thank V. Reiner and J. Roberts for their help (see w 

in analyzing some of the representation theoretic questions in this paper. 

An early version of this paper was prepared while the authors were participants 

of the Research-in-Pairs Program at Oberwolfach, sponsored by Volkswagon- 

Stiftung. The working environment was ideal, and we appreciated very much the 

hospitality of our hosts. 

2. Global  def in i t ions  

Throughout this paper, "vector space" will always mean "real vector space", 

"manifold" will always mean "real manifold", and "Lie group" will always mean 

"real Lie group". All tensors will be assumed to be smooth (C~) .  

Let V be a vector space. I f v  E V and i f v i  is a sequence in V, then vi 

c o n v e r g e s  in d i r e c t i o n  to  v if Rvi --* Rv in the topological space of linear 

subspaces of V. We denote by SBF(V) the collection of symmetric bilinear forms 

on V. 

Let S and T be tensors on a manifold M defined near a point m E M. Let k 

be a positive integer. We say that  S van i shes  to  o r d e r  k a t  m if S vanishes 

at m and if, for all l E { 1 , . . . , k } ,  for all vector fields X1,. . . ,X~ on M, we have 

that  (Lx1Lx2 "'" Lx,)(S) vanishes at m. We say that  S and T a g r e e  to  o r d e r  

k a t  m if S - T vanishes to order k at m. 

We will say that  a vector field X on R n is h o m o g e n e o u s  o f  d e g r e e  k 

if there are homogeneous polynomials P l , . . . , P n  of degree k such that  X = 

~-~i~=1 pi(O/Oxi). We say that  X is c o n s t a n t  if it is homogeneous of degree 0 

(i.e., a constant linear combination of the coordinate vector fields O/Oxi); l i nea r  

if it is homogeneous of degree 1; and q u a d r a t i c  if it is homogeneous of degree 2. 

A vector field X on a vector space V defined near zero is c o n s t a n t  (resp. 

l inear ,  q u a d r a t i c )  if there is an isomorphism between V and II~ dim y under 
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which X corresponds to a constant (resp. linear, quadratic) vector field near 

zero. 

A quadratic differentia| on a manifold is a smoothly varying system of 

quadratic forms, one on each tangent space of the manifold. A quadratic 

differential on a vector space V is c o n s t a n t  if, for all v E V, it is invariant 

under w ~-~ v + w : V --+ V. 

Let V be a vector space with quadratic form Q. Then SO(Q) denotes the Lie 

group of orientation-preserving linear transformations of V preserving Q, and 

so(Q) denotes the Lie algebra of SO(Q). The Lie algebra so(Q) can be identified 

with the Lie algebra of linear vector fields X on V such that the flow of X 

preserves Q. 

If X is a locally compact first-countable topological space and if xi is a sequence 

in X, then xi goes  to  inf in i ty  if, for every compact set K C_ X, for all but a 

finite number of i, we have xi ~ K.  We write xi --+ cc to indicate that xi goes 

to infinity. 

A continuous action of a locally compact first-countable group G on a locally 

compact first-countable topological space X is p r o p e r  if, for every compact 

K C_ X, the set {g �9 G I g K N K  ~ 0} is compact. A sequence gi in G is a 

nonproper s e q u e n c e  if both 

1. gi ~ oc in G; and 

2. there exists a sequence {xi} in X such that {xi} and {gixi} are both 

convergent sequences in X. 

Note that  the G-action is nonproper if and only if there is a nonproper sequence 

in G. If {gi} is a nonproper sequence, then so is {g~-l}. 

If gi and hi are sequences in a locally compact first-countable group G, then 

hi is a b o u n d e d  p e r t u r b a t i o n  of  9~ if there exist two convergent sequences 

{ki} and {/i} in G such that hi = k~gili for all i. 

Let G be a connected semisimple Lie group with finite center and let a be 

a maximal split torns in g. Then F(g, a) will denote the set of roots of g with 

respect to a. For each a �9 F, let ga be the root space ofc~. For A �9 a, let 

r + = r+(g ,  a) := {~ �9 r I ~(A) > 0} and n+(g, a) := (~)~erag~. 

For the remainder of this paper, fix a Lie group G and let G act by isometries of 

a connected pseudo-Riemannian manifold (M, 7). For m �9 M, let B,~ �9 SBF(g) 

be the pullback of "Ym by the differential g --+ T a M  at e of the orbit map g 

gin: G--+ M. I f V  c_ g is asubspace and i f m  �9 M, then V i s i s o t r o p i c  a t  

m if V is Bm-isotropic, i.e., BmlV is zero. If V C_ {~ is a subspace, then V is 

somewhere i so t rop i c  if there exists m �9 M such that V isotropic at m. For 
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m E M, let Gra := StabG(m) and let 9ra denote the Lie algebra of Gra. 

Define Era: G -+ M by Era(g) = g m  and let era: g --+ TraM be the differential 

at 1G of Era. Let Bra := e~(3'ra), so Bra is a symmetric bilinear form on g. 

For X E 0, let XM be the vector field on M corresponding to X. For X E g 

and m E M, let Xm := (XM)ra E TraM denote the value of XM at the point m. 

3. N o n p r o p e r  i some t r i c  ac t ions  

The results in this section are essentially due to Kowalsky. 

LEMMA 3.1: Let W~ and Xi be convergent sequences in g and let Y , Z  E g. Let 

gz be a sequence in G, let mi be a convergent sequence in M and let m E M.  

Assume that gimi -~ m in M. Assume that {(Adgi)Wi}i goes to infinity in g, 

but converges in direction to Y.  Assume that (Adgi)Xi does not converge to 

zero in It, and converges in direction to Z as i ~ co. Then B,n(Y, Z) = 0. 

Proo~ For all i, let Yi := (Adgi)Wi and let Zi := (Adgi)Xi.  Choose a sequence 

ti in the interval (0, co) such that Yi/ti  ~ Y.  Choose a sequence ui in (0, co) 

such that  uiZi --+ Z. 

Since Yi -+ co, it follows that ti -+ co in the interval (0, co). Since Zi does not 

converge to zero, ui does not approach co in the interval (0, co). Passing to a 

subsequence, we may assume that ui is bounded above. Choose K E (0, oc) such 

that, for all i, ui < K.  

Now Bg~m,(Yi/ti, uiZi) -+ BIn(Y, Z), so it suffices to show that 

(ui/ti)[Bg, ra,(Y~, Zi)] --+ O. 

Since ti --+ co and since, for all i, we have ui <_ K,  we conclude that ui/t i  -+ O. 

It therefore suff• to show that Bg,m, (Yi, Zi) is bounded. 

For all i, we have 

Bg, m, (Yi, Z~) = Bin, ( (Ad gi) - lY~,  (Adgi)-lzi) 
= Bra,(Wi,Xi).  

Since mi, Wi and Xi are all convergent, it follows that Bg, m, (Yi, Zi) is bounded, 

as desired. I 

COROLLARY 3.2: Let { X ~ } i , . . . ,  {X~}i be k convergent sequences in g and let 

y 1 , . . . , y k  E g. Let gi be a nonproper sequence in G. Assume, for all j E 
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{1 , . . . ,  k}, that {(Adgi)XJ}~ is divergent in g, but converges in direction to YJ. 

Then the span of Y 1 , . . . ,  y k  is somewhere isotropic. 

Proof." Choose a convergent sequence mi in M and m �9 M such that gimi -+ m. 

By Lemma 3.1, for all j , j '  �9 {1, . . . ,  k}, we have 

Bm(Y j, YY) = 0. 

Thus the span of y 1 , . . . ,  yk  is Bm-isotropic. | 

COROLLARY 3.3: Let S C g be a subset. Let gi be a nonproper sequence in G. 

Assume, for all X �9 S, that (Adgi)X -~ (x~ in g. Assume, for all X �9 S, that 

{(Adgi)X}, converges in direction to a vector Yx  �9 g as i -~ oc. Then the span 

of {]Ix [ X �9 S} is somewhere isotropic. 

Proo~ Choose a positive integer k and X 1 , . . . , X  k �9 S such that  the span of 

Y x , , . . . ,  Yxk is the same as the span of {]Ix IX  �9 S}. We wish to show that the 

span of Y x ' , . . . ,  Yxk is somewhere isotropic. 

For all i, for all j �9 {1 , . . . ,  k}, set X~ := XJ and YJ :-- YxJ. The result now 

follows from Corollary 3.2. | 

COROLLARY 3.4: Let S c_ g be a subset. Let gi be a nonproper sequence in G. 

Assume, for all X �9 S, that (Adgi)X ~ 0 in g. Then the span o r s  is somewhere 

isotropic. 

Proof: Choose a positive integer k and y 1 , . . . , y k  E S such that  the span of 

y 1 , . . . ,  yk  is the same as the span of S. 

For all j e {1 , . . . ,  k}, we have (Adgi)YJ --~ 0 as i --~ oo. By passing to a 

subsequence, we may assume, for all j E {1 , . . . ,  k}, that {(Adgi)YJ}i converges 

in direction. 
For all j E {1 , . . . ,  k}, choose a sequence {t~}i in the interval (0, oa) such that  

the sequence {t~ (Ad g,)YJ }~ converges to a nonzero vector Z j in g; then t~ ~ oo 

in the interval (0, oc). 

For all j e {1 , . . . , k} ,  for all i, let X~ := t~(Adg,)Y j. For all j �9 {1 , . . . , k} ,  

we know that  X~ --+ XJ r 0 as i ~ oo. 

For all j �9 {1 , . . . , k} ,  for all i, we have (Adg[1)(X~) = t~YJ. So, for 

j �9 {1 , . . . , k} ,  the sequence {(Adg~-l)(X~)}i goes to infinity, but converges 

in direction to YJ. The result follows from Corollary 3.2. | 

Recall that  n+(9, a) is defined in w 
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LEMMA 3.5: Assume that G is a connected semisimple Lie group with finite 

center. Let a be a maximal split torus in g. If the action of G on M is nonproper, 

then there exists Ao 6 a\{0} such that n+ ~ (g, a) is somewhere isotropic. 

Prool~ Let A the the connected subgroup of G corresponding to a, and let K be 

a maximal compact  subgroup of G. Using the Cartan decomposition G = K A K ,  

we see that  any nonproper sequence in G has a bounded perturbation which is 

contained in A. A bounded perturbation of a nonproper sequence has a nonproper 

subsequence, so there is a nonproper sequence {ai}i in A. 

For each i, choose Ai 6 a such that  exp(Ai) = ai. Passing to a subsequence, 

we assume that  Ai converges in direction to A0 6 a\{0}. 

The result now follows from Corollary 3.3, with S := --  A(-J~6r§ 0~. | 

4. Isotropic subspaces of g 

Fix m0 6 M. Let Eo := Emo and let e0 := e,~o. 

LEMMA 4.1: If  V C_ g is a subspace isotropic at mo 6 M, then gmo contains a 

codimension one subspace of V. 

Proof: Since V is Bmo-isotropic, it follows that  co(V) is isotropic in TmoM, and 

therefore has dimension at most one. Thus the kernel of eolV has codimension 

at most one in V, as desired. | 

LEMMA 4.2: I f X  6 grno, then 

[(adg X)($)] n [(adg X)-l(g,~o)] 

is isotropic at rao. 

Proo~ Fix Y 6 [(ad~X)(g)] V~ [(ad~X)-l(g, ,o)] .  We wish to show that  

Bmo (Y, Y)  = O. 
As Y 6 (ad~ X)(g),  fix W 6 g such that  Y = (ad 0 X ) W  = [X, W]. Since X 6 

0,~o, we have B,,,o ([X, W], Y) + B,no(W, IX, Y]) = 0. Since Y e (adg X)- l (g ,~o) ,  

we get [X, Y] = (ad~ X ) Y  6 Smo C_ ker(Bmo). Then 

Bmo(Y, Y) = Bmo([X, W], Y) = [X, Y]) = o. , 
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5. A c t i o n s  o f  SLn(R) ~ R n 

Fix an integer n _> 3. Assume that G = SLn(R) ~< R n. Assume that (M, 7) is 

Lorentz. Assume that G acts nonproperly on M. (We will eventually show that 

this is impossible.) 

Let K := SO(n). Let A be the maximal split torus in SL,,(R) consisting of 

n x n diagonal matrices with positive diagonal entries and determinant one. 

LEMMA 5.1: The action o f  A ~< R '~ on M is nonproper. 

Proof." As SL,~(R) = K A K ,  we get G = K ( A  D< R n ) K .  So any sequence in G 

has a bounded perturbation in A ~< R n. A bounded perturbation of a nonproper 

sequence has a nonproper subsequencc. | 

LEMMA 5.2: Let  X C sl,~(R)\{0} and let v E R" .  Let  mo �9 M .  A s s u m e  that  

every  row o f  X vanishes except the first. A s s u m e  that  every  en try  o f  v vanishes 

except  poss ibly  the first. Then X + v ~ gmo. 

Proof." Assume, for a contradiction, that X + v E gin0. 

Let )( : R n ~ ]R" denote the endomorphism corresponding to X. Because 

every entry of v vanishes except the first, because every row of X vanishes except 

the first and because X # 0, choose w E R n such that )(w = v. Then 

(Ad w)(X + v) = ((Adw)X) + v = X + [w,X]  + v 

= X - [ X , w ]  + v  = X - ) ( w  + v  

= X - v + v = X .  

Replacing m0 by wmo and replacing X + v by (Ad w ) ( X  + v),  we may assume 

that v = 0. 

Then H := {exp(tX) lt C IR} C Gmo. As H is a noncompact subgroup of 

SLn(]R), we conclude that the SLn(R) action on M is nonproper. As n _> 3, this 

contradicts [Kowalsky96]. | 

LEMMA 5.3: The action ofF'* on M is nonproper. 

Proof: By Lemma 5.1, there exists a nonproper sequence gi in A ~< R n. 

For all i, choose ai in A and vi in R n such that gi = aivi.  

If {ai} has a convergent subsequence, then after passing to this subsequence 

and making a bounded perturbation we conclude that vi is a nonproper sequence; 

this would imply that R'* is nonproper on M, and we would bc done. We therefore 

assume that ai --~ e~ in A, and aim for a contradiction. 
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J be J be the (j,j) entry of a~ and let v, For each i, for each j E {I .... ,n}, let a i 

J > 0 .  the j t h  entry of vi; by definition of A, we have a i 

For all j ,  k E { 1 , . . . ,  n}, let Ejk denote the matr ix with a one in the (j, k) 

entry and zeroes everywhere else and let uj denote the vector in R n with a one 

in the j t h  entry and zeroes everywhere else. 

Reordering coordinates,  we may assume that  a~ ~ oc and ai 2 ~ 0. 

3 _~ ec, then both  (Adgi )u l  = a~ul and (Adgi)u3 = aa~ua go to infinity and If a i 

converge in direction to ul and u3, respectively. By Corollary 3.3, we conclude 

tha t  the span Rul + Ru3 is somewhere isotropic. By Lemma 4.1, a codimension 

one subspace in Rul  4- Ru3 is contained in the stabilizer of some point,  so R n 

acts nonproperly  and we are done. 

3 does not go to infinity. Passing to a subsequence, we We assume then that  a~ 

may assume tha t  a, 3. is bounded. 

= (hi ~hi)E12 - a~v~ul, which, after passing to a For all i, we have (Adgl)E12 1 2 

subsequence, converges in direction. Choose X E RE12 and u E Rul such tha t  

(Adgi)E12 converges in direction to X 4- u. 

Similarly, for all i, we have (Adgi)E13 = (a1/a~)E13 _ aiviu1,1 3 which goes 

to infinity, and, after passing to a subsequence, converges in direction. Choose 

Y E REla  and v E Rut  such tha t  (Adgi)E13 converges in direction to Y + v. 

We consider first the case where X r 0. Because Et2 and El3 are linearly 

independent,  X + u and Y + v are linearly independent in s [ , (R)  ~< R n . I t  follows 

from Corollary 3.3 and Lemma 4.1 tha t  we can choose mo �9 M and s, t �9 R such 

tha t  s ( X  + u) + t ( Y  + v) �9 9too\{0}. Let Z :=  s X  + t Y  and w :=  su + tv. 

Then Z 4 . w  �9 gmo\{0} and Z �9 REI2 +RE13 and w �9 Rut .  So all but  the first 

row of Z vanishes and all but  possibly the first entry of w vanishes. In this case, 

by Lemma 5.2, we must  have Z = 0, and obtain a nontrivial (hence noncompact)  

stabilizer for the Rn-action.  Thus R '~ acts nonproperly, as desired, provided tha t  

x r  
A similar a rgument  will work in the case where Y r 0. We may therefore 

assume tha t  X = Y = 0. 

Since 1 3 1 3 (a i / a  i )E13- a i v i t t  1 converges in direction to Y + v = v �9 Rul ,  it follows 
tha t  ~ 3 1 3 ( a i / a i ) / ( a i v i )  --e O. 

As X = 0, it follows tha t  X 4. u = u �9 Rul .  So (Adgi)E12 converges in 

direction to ul .  

Now, for all i, we have (Adgi)E23 a 2 3 ~2v3 u = ( i /a i )E23 - ai i 2, and, since 

2 3 2 3  1 3 1 3  ) = la, ) / ( a ,  v, ) --+ O, 

we see tha t  (Ad gi)(E23) converges in direction to u2. 
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We therefore conclude, from Corollary 3.3 (with S := {E12, E23}), that  the 

span of ul and u2 is somewhere isotropic. 

By Lemma 4.1, this implies that  a noncompact subgroup of R'* stabilizes some 

point of M. Thus R n acts nonproperly on M. I 

6. C o d i m e n s i o n  o n e  s tabi l izers  in R n 

Fix an integer n >_ 2. Assume that  G = SLn(R) ~< R '~. Assume that  (M, 7) is 

Lorentz. Assume that  R n acts nonproperly on M. (We will eventually show that  

this is impossible.) 

LEMMA 6.1: The subalgebra R n of g is somewhere isotropic. 

Proof: By assumption, there is a nonproper sequence vi in R n. Fix a norm on 

R n. Choose sequences {wi} in the unit sphere of R n and {ti} in (0, oc) such that  

ti -+ (x) and such that  vi = tiwi. Passing to a subsequence, we may assume that  

there exists woo on the unit sphere of R n such that wi -+ woo. 

For all X E sin(R), let )( : R n -~ R n be the corresponding endomorphism; we 

then have 

(Advi)X = X + [vi, X] = X - ffvi = X - ti(fiwi). 

For all X E P := {X E sin(R)[ Xwoo r 0}, we conclude that  the sequence 

{(Advi)X}i  goes to infinity, but converges in direction to .~woo. 

Note that  R n is the span of {)(woo IX  E sin(R)}, and therefore is also the 

span of S := {)(woo I X  E P}. Thus, by Corollary 3.3, we conclude that  R'* is 

somewhere isotropic, as desired. I 

7. Some representation-theoretic results 

Roughly speaking, the object of this section is to show that the Lie algebra 

so(l, d- 1) D< R d does not contain si2(R) D< R 2 as a subalgebra. More precisely, 

the following lemma, together with Lemma 7.2, shows that there is no nonzero 

linear map from s[2(R) D< R 2 to so(l, d- I) ~< R d that preserves the Lie bracket 

of elements of s[2(R) with elements of R 2. 

LEMMA 7.1: Let b and b be Lie algebras and let W C_ b be a subspace that 

is not contained in any proper Lie subalgebra of  b. Let r W ~ [} be a linear 

map. Let Do denote the smallest Lie subalgebra of I) that contains r  Let 

V be a vector space, and let p: b --~ gI(V) be a representation. For all X E b, 
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let X :-- p(X): V -+ V be the endomorphism corresponding to X. Define 

:= p(b) C_ ~I(V). Let zp: V --~ D be a linear map. Assume, for alI X E W,  

U 6 V, that 

(7.1) [@(X), ~b(U)] = 1b(XU). 

Then 

1. if p: b ~ gl(V) is irreducible and if ~b # 0, then ~: V ~ b is injective, 

2. if ~b is injective, then [J is a Lie quotient of Do, i.e., there exists a surjective 

Lie algebra homomorphism a: Do ~ [~, and 

3. if ~b is injective and if [~ is semisimple, then there exists a Lie algebra 

homomorphism ~': b --+ ~o such that, for all X E b, for all U E V, we have 

(7.2) [~b'(X), ~b(U)] = ~b(J~U). 

Proof  of Lemma 7.1: Proof of I: Assume that p is irreducible and ~b # 0. 

Suppose Uo 6 V and ~b(Uo) = 0. By (7.1), we conclude, for all X E b, that 

(p(X))Uo = XUo E ker(~b). Since p: b -+ 9i(V) is irreducible, the linear span of 

{ (p (X) )Uo{X  E b} is either 0 or V. Since ~b = 0, we conclude that Uo = 0. 

Proof of 2: We now assume that ~b is injective. 
Let ]IV := ~(W). Then no proper Lie subalgebra of Do contains ]4;. Let 

)2 := ~b(V). Let W :-- p(W).  

The map ~b: V --~ V is an isomorphism of vector spaces and therefore induces 

an isomorphism k~: 91(V) -+ 9[(V) of Lie algebras. Then, for all X E g[(V), for 
all U E V, we have 

(7.3) [~(X)][~b(U)] = ~b(XU). 

By (7.1), we know, for all X E W, that ado(~b(X)): b ~ O preserves 1;. From 

(7.1) and (7.3), we get 

(7.4) ad~(~(X)){]) = kI,(X). 

Let n~ (V) denote the normalizer in b of ~2. Then n~(~)) is a Lie subalgebra of 

b and, from (7.1), it follows that kV C_ nb(V ). Since no proper Lie subalgebra of 

Do contains W, it follows that bo C_ n~ (V). 
Define T: n0(Y ) --+ g[(V) by r(Y) = (ad~Y){V. Then T is a Lie algebra 

homomorphism. 

By (7.4), we conclude, for all X 6 W, that T(~b(X)) = tI,()~). Thus r(FV) = 

tI,(W), which implies that W C_ r-l(tI,(b)).  Since no proper Lie subalgebra of b0 

contains )4;, it follows that Do C_ T-l(tI,([~)), which implies that T(b0) C tI,(b). 
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Since ffg(p(W)) = q(igd) = 7-(W) _C T(bo), we conclude that  

w c 

By assumption,  no proper  Lie subalgebra of b contains W, so 

b c 

Then  gg(b) = gg(p(b)) C T(I~0). We have already established that  r([}o) C_ kO(b), so 

7-(1~o) = fig(t). It follows that  (kO-lor)(ho)  = b, so a := (k0-1oT)l[~0 : 1~0 --~ gI(V) 

is the desired map. 

Proof of 3: We now assume tha t  r is injective and b is semisimple. 

Let  a: bo --~ b be the surjective homomorphism constructed above. As b is 

semisimple, Whi tehead 's  Lemma implies tha t  p: b --+ b factors through a,  i.e., 

tha t  we can find a Lie algebra homomorphism r b ~ 1~o C_ i~ such tha t  a o r  ' = p. 

Because Til~o ---- @ o a and a o r = p, it follows, for all X E b, tha t  

[ad~(r  = T( r  = ffg(a(r = kO(p(X)) = fig(X). 

Therefore,  for all X E b, for all U E V, we have 

[ r  r  = [ad~(r162 = [~()C)][r = r  

as desired. I 

Note tha t  the significant difference between (7.1) and (7.2) is tha t  r W --~ i~ 

is simply a linear map, whereas r b -~ b is a Lie algebra homomorphism.  The  

main content  of (7.2) is tha t  p: b --~ ill(V) is isomorphic to a subrepresentat ion 

of ad~ or b ~ ill(b). Thus, (3) of Lemma 7.1 asserts tha t  if r is injective, if 

is semisimple and if pIW is isomorphic to a subrepresentat ion of (ad~ or  

then W can be replaced by the Lie algebra it generates, and r can be replaced 

by a Lie algebra homomorphism.  Even if b is not semisimple, we still get some 

information from (2), namely tha t  b is a subquotient  of b. 

The  essential content  of the next  lemma is tha t  sI2(R) K R 2 is not a Lie sub- 

algebra of so( l ,  d - 1) K R d. 

LEMMA 7.2: Let  d _> 1 be an integer. Let 1~ = s o ( 1 , d -  1) K R d. For all 

X E s[2(R), let )(: R 2 ~ R 2 denote the linear map corresponding to X .  Assume 

that r s[2(R) -~ b is a Lie algebra homomorphism and that r R 2 -+ !} is 

a nonzero linear map. Then there exist X E sl2(R) and U E R 2 such that 

[r r # 
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Proof  Assume for a contradiction that, for all X E Sis(R) and U E R 2 , we have 

(7.5) [r r = r  

Since ~b is nonzero, s[2(R) is simple, and the standard representation of sis(R) 

on R 2 is irreducible, we conclude that both r and r are injective. Thus the 

standard representation of s[2 (R) on R 2 is a subrepresentation of ad o or s[2 (R) --+ 

g[([~). Since so(l,  0) - {0} and so(l,  1) are both Abelian, we conclude that  d _> 3. 

Let b := r Using (7.5) and the irreducibility of the standard repre- 

sentation ofs[2(R), we conclude that r r 0. Since s[2(R) is simple, r s[2(R) -+ b 
is a Lie algebra isomorphism. 

Define Q: R d -+ R by Q(Xl , . . . ,Xd )  = 2XlXd+X~ + ' ' ' + X 2 d _ l .  We may 

assume that b = so(Q) K R d. Because b is semisimple, there is an automorphism 

A: [~ --+ [l such that A(b) C so(Q). Replacing b by A(b), r by A o r and r by 

A o r we may assume that b C_ so(Q). 

Let a be the maximal split torus in so(Q) consisting of all diagonal matrices 

in so(Q). Let no be the maximal split torus in s[2(R) consisting of all diagonal 

matrices of trace zero. Then r is a maximal split torus in so(Q), so there 

exists an automorphism A': h -+ D such that A'(r = a. Replacing b by A'(b), 

r by A' o r and r by A' o r we may assume thai a C_ b and that r = a. 

Let Jo E s[2(R) be the diagonal matrix with 1 in the (1, 1) entry and with -1  

in the (2, 2) entry. Let J E so(Q) be the matrix with 1 in the (1, 1) entry, with 

-1  in the (d, d) entry and with 0s elsewhere. 

Since r = a = R J,  we conclude that r = AJ for some A E R. 

We calculate that  adh(J): b -~ I} has eigenvalues 1, 0 and -1  and that 

ads[2(R)(Jo): s[2(R) -~ sls(R) has eigenvalues 2, 0 and -2 .  

Since the representation ad o or s[2(R) --~ i~[([~) contains both adB~2(R) and the 

standard representation of s[2(R) on R 2 as subresentations, we conclude that 

adh(r has nontrivial eigenspaces with eigenvalues 2, 1, 0, - 1  and 2. This 

contradicts the fact that ad~(J) has eigenvalues 1, 0 and -1.  | 

8. J e t s  of  vec to r  fields of  i sometr ic  act ions  

LEMMA 8.1: Let g and h be quadratic differentials near the origin in a vector 

space, and let X and Y be vector fields near the origin. Assume that g and h 

agree to order one at zero and that X and Y agree to order one at zero. Then 

L x g  - L r h  vanishes at zero. 
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Proof'. Since g and h agree to order one at zero, Lx (g - h) vanishes at zero, so 

it suffices to show tha t  Lxh  = Lyh at zero. 

Fix vector fields Z and W near zero. We wish to show that  

(Lxh)(Z, W) = (Lvh)(Z, W) 

at zero. Since X a n d Y a g r e e  to order one at zero, we get 

X ( h ( Z , W ) ) = Y ( h ( Z , W ) )  and L x Z = L y Z  and L x W = L y W  

at zero. As (Lxh)(Z ,W)  = X(h(Z,W))  - h(LxZ, W) - h(Z, L x W )  and 

(Lyh)(Z, W) = Y(h(Z, W)) - h ( L y Z ,  W) -h (Z ,  LvW),  the result follows. | 

Recall tha t  (M, 3') is a pseduo-Riemannian manifold. 

LEMMA 8.2: Let mo E M. Let N be a neighborhood of zero in Tmo M such that 

expm o [N is a diffeomorphism onto a neighborhood Mo of too. Let ~/ := exp~no (7). 

Let ~ denote the fiat pseudo-Riemannian metric on T,~oM corresponding to the 

inner product %no on Tmo M. Then ;r and ~ agree to order one at zero. 

Proof: Fix X , Y  E To(TmoM). Let ) ( , Y  E Tmo M be the corresponding 

elements, under the identification of To(Tmo M) with TmoM. Then 

;r(X, Y) = 7()( ,  1:') = 7too (X, Y). 

Thus ~ /=  ~ at zero. 

Fix vector fields X, Y, Z in T,~oM defined near zero. It  now suffices to show 

tha t  (Lz~/)(X, Y ) =  (Lz-~)(X,Y) at zero. 

Since ~ = ~ at zero, we have ~(LzX,  Y) = ~(LzX,  Y) at zero and ~/(X, LzY)  

= ~(X, L z Y )  at zero. Now 

(Lz~/)(X, Y) = Z(')(X, V)) - ;r(LzX, Y) - ~(X, LzY) ,  

and (Lz~)(X, Y) = Z(-~(X, Y)) - ~(LzX,  Y) - ~(X, LzY).  

It  therefore suff• to show that  Z(z~(X, Y)) = Z(~(X, Y)) at zero. 

Let V be the Levi-Civita connection on TmoM defined near zero corresponding 

to -~ and let V be the Levi-Civita connection on TmoM corresponding to 7. We 

now wish to show tha t  

~((T zX ,  Y) + ~r(X, ~T zY)  = ~(VzX,  Y) + ~(X, V z Y )  

at zero. 
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Since x / -  ~ at  zero, we have x/((YzX, Y)  = ~(~7zX,  Y)  at zero and ;r(X, (TzY)  

= ~ ( X , ( T z Y )  at zero. It therefore suffices to show tha t  ( 7 z X  = V z X  at zero 

and (T z Y = V z Y at zero. 

Let n :=  d i m M .  Let el . . . . .  en be a basis for TmoM and let E1 . . . .  , E,~ be the 

corresponding constant  vector fields on TmoM. 

By a result tha t  appears in a variety of references (e.g., [KN63, Proposi t ion 8.4, 
^ 

p. 149, in Chapter  III]),  for all i , j  E { 1 , . . . , n } ,  we have tha t  VE, Ej  vanishes 

at zero. Moreover, since ~ is constant  and hence flat, it follows, for all i , j  C 

{1 , . . .  ,n},  tha t  VE, Ej  = O. 

Fix i , j  C {1 , . . .  ,n} and fix two functions f , g  on T, no M.  Thcn  (7fE,(gEj)  = 

f ( E i g ) E j  = V I E  ̀  (gEj) at zero. 

For any vector field R on TmoM, there exist functions h i , . . . ,  h,, on Tmo M 

such tha t  R = y]~ hiEi. 

So, for any two vector fields P, Q on TmoM, we have ~ p Q  = V p Q  at zero. In 

particular,  ( 7 z X  -- V z X  at zero, and s  = V z Y  at zero, as desired. | 

The next seven lemrnas follow from straightforward computa t ions  and from 

Taylor 's  Theorem. 

LEMMA 8.3: Let X be a vector field defined near zero in a vector space. Let f 

be a function defined near zero vanishing to order k at  zero. Then f X vanishes 

to order k at  zero. 

LEMMA 8.4: Let S and T be two vector fields defined near zero in a vector space. 

I f  S and T vanish at  zero, then [S, T] vanishes at zero. 

LEMMA 8.5: Let S, T and U be vector fields defined near zero in a vector space. 

I f  S and T agree to order one at zero and U vanishes at zero, then IS, U] and 

[T, U] agree to order one at zero. 

LEMMA 8.6: Let X be a vector field defined on a neighborhood of  zero in a real 

vector space V. Then for any k > 0, there exist vector fields Xo, . . . , Xk  and R 

on V such that X i  is homogeneous of  degree i, R vanishes to order k at zero, and 

X = Xo + ""  + X~ + R on a neighborhood of  zero. 

LEMMA 8.7: Let C, C', L and L' be vector fields defined near zero in a vector 

space. Assume that  C and C' are constant and that L and L' are linear. Then 

1. [L', C] is constant and [L', L] is linear; and 

2. i f  C + L and C' + L' agree to order one at zero, then C = C' and L = L'. 
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LEMMA 8.8: Let L be a linear vector field in a vector space. Let B be a constant 

quadratic differential. Then LLB  is constant. 

LEMMA 8.9: Let V be a vector space with a quadratic form B. Let B denote the 

constant quadratic differential on V corresponding to B. Let C and L be vector 

fields, such that C is constant and L is linear. Assume that LC+L(B) vanishes 

at zero. Then L E 5o(B). 

Recall that G is a connected Lie group acting locally faithfully by isometries 

of a pseudo-Riemannian manifold (M,')'). Fix mo E M. Let N be a starlike 

neighborhood of 0 in Tm, M such that exp,no is defined on N and such that  

exp,no is a diffeomorphism of N onto a neighborhood 54o of mo in M. 

X * Recall that  Gmo := Stabc(mo). Let ~ := e P,no('r). Let ~ denote the flat 

Lorentz metric on N coming from the Minkowski form "rmo. 

For X E g, recall that XM is the vector field on M corresponding to X. For 

X E g, let )( :--: (exp~,,lo).(XM). For X E g, let Xc, ~'L, XQ and -~R be vector 

fields on TmoM such that )~c is constant, )(L is linear, )(Q is quadratic, )(R 

vanishes to order two at zero and ,~ = )~c + )(L + )~Q + -~R. 

LEMMA 8.10: Assume that the action of G on M is by isometries. 

1. For all X E g, we have XL E so('rmo). 

2. For all U E g, if ( I t  = 0, then f] = ('[L. 

3. For all X,  U, T E 9, if f-]c = 0 and if T = [X, U], then 

Tc = [)(c, UL] and TL = [-~L, UL]. 

Proof of Lemma 8.10: Proof of I: By definition of -~c and -~L, we know that 

)( and )(c + )(L agree to order one at zero. By Lemma 8.2, we see that "~ and 

agree to order one at zero. By Lemma 8.1, since L , ~  vanishes on N, we conclude 

that L,~c+RL~ vanishes at zero. Thus, by Lemma 8.9, )(L E so('rmo). 

Proof of 2: Since Uc = 0, it follows that UM vanishes at m0. So, for all t E R, 

we have (exptU)m0 = too. i.e., exptU E Gmo. 

Naturality of the Riemannian exponential map implies that U is the restriction 

to N of the vector field of the flow 

(t,v) ~ (exptU),(v): R x Tmo M -~ TmoM. 

Since this flow is a flow by linear transformations, gr is linear, i.e., U = grL. 

Proof of 3: By definition of )(c and XL, we know that )~ and )~c + -~'L agree 

to order one at zero. Similarly, 2 ~ and Tc + 7~L agree to order one at zero. 
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Since Uc -- 0, it follows that U vanishes at zero. By Lemma 8.5, 

[)~c + )(L, U] and [)(, U] 

agree to order one at zero. Because T = [X, U], we have T -- [)~, O-]. Thus 

[)Cc + )CL, [7] and Tc + TL 

agree to order one at zero. 

By (2) of Lemma 8.10, 0 = UL. Thus 

[Xc + -XL, U] = [-~c, UL] J- [XL, UL]. 

It follows that  

[-"~C, UL] Jr- [-"~"L, UL] and ~"c "{- TL 

agree to order one at zero. 

By (1) of Lemma 8.7, [J(c, UL] is constant and [)~L, UL] is linear. We conclude 

from (2) of Lemma 8.7 that Tc -- [)(c, grL] ---- [Xc, UL] and that TL = [)CL, UL] = 

[.'~L, U/., ]. m 

9. R e s t r i c t i o n  o n  s t a b i l i z e r s  

Let n > 2 be an integer. 

Assume that G = SLn(R) K R n and that (M,7) is Lorentz. Recall that G 

acts locally faithfully by isometries of (M, 7). Let m0 E M. Recall that Gmo := 

StabG(mo). For all X E sin(R), let X: R n --~ R n denote the corresponding linear 
map. 

Fix a starlike neighborhood N of 0 E Tmo M such that expm o is defined on N 

and expm o is a diffeomorphism of N onto a neighborhood M0 of mo in M. 

For all X E g, let )~ := (exp~lo),(XM). 

X * Let ~/ := e Pmo (g)" Let ~ denote the fiat Lorentz metric on N coming from 

the Minkowski form 7too. 

By Lemma 8.6, we can, for each X E sin(R) K R ~, choose vector fields )(c,  

)~L and )(R on Tmo M such that )~c is constant, -~L is linear, XR vanishes to 

order one at zero, and 1( = )(c  + XL Jr" XR. 
In Lemma 9.1 below, note that r is only a linear map; there is no reason to 

believe that  it is a Lie algebra homomorphism. 
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LEMMA 9.1: Suppose that R n C_ Gmo. Then there exist linear maps r ~I,~(R) -+ 

so(Trno) and r R n -4 so(%~o) such that r is injective and, for all X E sln(R), 

for all U E R n , we have 

[r r = r  

Proo~ Define r sI,~(R) -4 g[(T,~oM ) and r R n -4 gI(Tmo M)  by 

r  = -~L and r  = UL. 

By (1) of Lemma 8.10, r C_ so(%~o ) and r  n) C_ so('ymo). 

For all U E R '~ , we have U E g,,,o, so, by (1) of Lemma 8.10, Uc = 0. By (2) 

of Lemma 8.10, we know that r  = / ) .  

If r  = 0, then U = 0, so the Killing vector field UM vanishes on M0. If 

a Killing vector field on a connected pseudo-Riemannian manifold vanishes on a 

nonempty open set, then it vanishes everywhere. We conclude, for all U E R r', 

that  if r  = 0, then UM = 0 which implies (by local faithfulness of the action) 

that U = 0. Therefore r R" -4 so(%no) is injective. 

Fix X e sl,~(R) and U �9 R n and let T := [X, U] = )(U. Then (3) of Lemma 

8.10 implies that  [-~L, UL] : TL, which proves the Lemma. I 

LEMMA 9.2: Assume that n = 2. Then R 2 cannot be contained Gmo. 

Proo~ Assume for a contradiction that R 2 C_ G,,,o. Let p be the standard 

representation of s[2(R) on V := R 2. Set W := s[2(R) and b := so(%~o)- Let r 

and r be as in Lemma 9.1. 

Let d := d imM.  Then b is isomorphic to so(1, d -  1). Choose r as in (3) of 

Lemma 7.1. Replacing r by r in the statement of Lemma 7.2, we arrive at a 

contradiction. I 

10. C o n c l u s i o n  

THEOREM 10.1: Let n >_ 3 be an integer. Let G = SLn(R) ~< R" act locally 

faithfully by isometries of a connected Lorentz manifold M .  Then the action of 

G on M is proper. 

Proof." Suppose that the G-action on M is nonproper. We wish to obtain a 

contradiction. 

By Lemma 6.1, there exists m0 C M such that R" is isotropic at m0. By 

Lemma 4.1, we conclude that the stabilizer G,~ o in G of m0 contains a codimen- 

sion one subgroup of R" ; as n >_ 3, we see that Gmo contains a two-dimensional 

subspace S of R '~. 
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Let S' be any vector space complement to S in R n. Then SL(S) injects into 

SL(S) x SL(S'),  which, in turn, injects into SLn(R). Further, S is a subset of 

R n. These injections of SL(S) into SLn(R) and of S into R n combine to create 

an injection of SL(S) ~( S into G. 

Since S is two-dimensional, SL(S) ~( S is isomorphic to SL2(R) ~( R 2. We 

therefore obtain an injective homomorphism SL2(R) ~( R 2 -+ G such that R 2 

maps onto S. Then SL2(R) ~( R 2 acts on M and there exists mo E M such that  

R 2 c_ G.~o. 
This contradicts Lemma 9.2. | 
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