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ABSTRACT

We prove that a locally faithful, isometric action of SL,(R) x R" on
a connected Lorentz manifold must be a proper action. This provides
an essential step toward classifying nonproper isometry groups of non-
compact Lorentz manifolds.

1. Introduction

In [AS97a] and [AS97b], we gave a complete classification up to local isomor-
phism of the Lie groups that can appear as simply connected isometry groups
of compact Lorentz manifolds. The same classification was achieved essentially
simultaneously by A. Zeghib ([Zeghib95b] and [Zeghib95a]). In this paper, we
take up the investigation of isometric group actions on noncompact Lorentz man-
ifolds. We consider actions that have nontrivial dynamics in the sense that the
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action is nonproper. In [Kowalsky96], N. Kowalsky investigated nonproper iso-
metric actions of simple Lie groups on Lorentz manifolds, and made several fun-
damental discoveries. As a first step toward studying isometric actions of general
nonsimple groups, we consider the special case SL,(R) x R*, n > 3. In other
papers ([Adams98a], [Adams99a], [Adams99b], [Adams99d]), we use the tech-
niques developed here to study more general situations. One may hope, using
these techniques, to give a list of the connected Lie groups that admit a non-
proper, faithful isometric action on a connected Lorentz manifold. (See Theorem
1.1 and Theorem 1.2 of [Adams99d].)

Here, we prove (Theorem 10.1) that a locally faithful action of
SL,(R) x R®*, n > 3, by isometric transformations of a connected Lorentz
manifold M must be a proper action.

Note that if A is a Lie group and if there is an isometric action of Aut(A4)° x A
on a Lorentz manifold such that the restriction to A is nonproper, then any
connected Lie group with a normal subgroup A’ isomorphic to A admits an
isometric action such that A’ is nonproper. This fact is a consequence of Corollary
4.4 in [Adams99¢|. Since Aut(R™) is GL(n,R), it is reasonable, for any positive
integer n, to ask whether GL(n, R)? x R" has an action such that R™ is nonproper.
If there were such an action, then the restriction to SL(n,R) x R* would still be
nonproper, and this paper shows that that is impossible, for n > 3. In [AS99], we
refine our methods to extend this result to conformal actions. By Theorem 1.1 of
[Adams99d], it follows that any locally faithful isometric action of SL(2, R) x R?
on a connected Lorentz manifold is proper. The methods used in [Adams99d]
are far more delicate than the ones used here.

We proceed to an outline of the proof that a locally faithful action of G =
SL,(R) x R™, n > 4, by isometries of a connected Lorentz manifold M is proper:
We suppose that the action of G on M is nonproper, and argue to obtain a
contradiction.

Let F be the natural equivariant map from M to the vector space of symmetric
bilinear forms on g. Following ideas of [Kowalsky96], we use F' to establish that
R™ is lightlike at some point mg € M, so that some codimension one subgroup
S in R"® must stabilize my.

On the other hand, the Adjoint action of R* on g/R" is trivial, and so preserves
all symmetric bilinear forms. As a result, there are many R"-invariant symmetric
bilinear forms on g whose kernel contains R®. Any of these forms will give rise
to a G-invariant form on g/R™. Consequently, the study of F' cannot be used to
prove that any element of s, (R) is lightlike at any point of M. In particular, it
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canmnot establish that any element of SL,(R) stabilizes a point.

To proceed, we use a new idea: Let d := dim M and ng := dim S. The action
of G on M gives, for every element of g, an isometric Killing vector field on M.
We use 1-jets of these vector fields (viewed in exponential normal coordinates)
to construct a Lie subalgebra of so(1,d — 1) that admits a Lie algebra surjection
onto sl,,(R). As n > 4, we have ng = n — 1 > 3, so the split rank of sl (R)
is greater than the split rank of so(1,d — 1), giving a contradiction. A slightly
improved version of this argument which works for n > 3.

ACKNOWLEDGEMENT: We appreciate the careful reading of the referee. The
first author would like to thank V. Reiner and J. Roberts for their help (see §7)
in analyzing some of the representation theoretic questions in this paper.

An early version of this paper was prepared while the authors were participants
of the Research-in-Pairs Program at Oberwolfach, sponsored by Volkswagon-
Stiftung. The working environment was ideal, and we appreciated very much the
hospitality of our hosts.

2. Global definitions

Throughout this paper, “vector space” will always mean “real vector space”,
“manifold” will always mean “real manifold”, and “Lie group” will always mean
“real Lie group”. All tensors will be assumed to be smooth (C*°).

Let V be a vector space. If v € V and if v; is a sequence in V, then v;
converges in direction to v if Ry; — Rv in the topological space of linear
subspaces of V. We denote by SBF (V) the collection of symmetric bilinear forms
onV.

Let S and T be tensors on a manifold M defined near a point m € M. Let k
be a positive integer. We say that S vanishes to order k at m if S vanishes
at m and if, for all { € {1,...,k}, for all vector fields X;,...,X; on M, we have
that (Lx, Lx, ---Lx,)(S) vanishes at m. We say that S and T agree to order
k at m if S — T vanishes to order k at m.

We will say that a vector field X on R" is homogeneous of degree k
if there are homogeneous polynomials p;,...,p, of degree k such that X =
S 1 pi(0/0x;). We say that X is constant if it is homogeneous of degree 0
(i.e., a constant linear combination of the coordinate vector fields §/9z;); linear
if it is homogeneous of degree 1; and quadratic if it is homogeneous of degree 2.

A vector field X on a vector space V defined near zero is constant (resp.
linear, quadratic) if there is an isomorphism between V and RY™V under
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which X corresponds to a constant (resp. linear, quadratic) vector field near
z€ro.

A quadratic differential on a manifold is a smoothly varying system of
quadratic forms, one on each tangent space of the manifold. A quadratic
differential on a vector space V is constant if, for all v € V, it is invariant
under w—v+w:V =2 V.

Let V be a vector space with quadratic form @. Then SO(Q) denotes the Lie
group of orientation-preserving linear transformations of V' preserving ), and
s0(Q) denotes the Lie algebra of SO(Q). The Lie algebra so(Q) can be identified
with the Lie algebra of linear vector fields X on V such that the flow of X
preserves Q).

If X is a locally compact first-countable topological space and if «; is a sequence
in X, then z; goes to infinity if, for every compact set K C X, for all but a
finite number of i, we have z; ¢ K. We write z; — oo to indicate that z; goes
to infinity.

A continuous action of a locally compact first-countable group G on a locally
compact first-countable topological space X is proper if, for every compact
K C X, the set {g € G|gK N K # 0} is compact. A sequence g; in G is a
nonproper sequence if both

1. gi = oo in Gj; and

2. there exists a sequence {z;} in X such that {z;} and {giz;} are both

convergent sequences in X.
Note that the G-action is nonproper if and only if there is a nonproper sequence
in G. If {g;} is a nonproper sequence, then so is {g;'}.

If g; and h; are sequences in a locally compact first-countable group G, then
h; is a bounded perturbation of g; if there exist two convergent sequences
{k;} and {;} in G such that h; = k;g;l; for all 7.

Let G be a connected semisimple Lie group with finite center and let a be
a maximal split torus in g. Then I'(g, a) will denote the set of roots of g with
respect to a. For each o € T, let g, be the root space of a. For A € q, let
It =T}(g,a) := {a € T|a(A) > 0} and n}(g,a) := B er, ba-

For the remainder of this paper, fix a Lie group G and let G act by isometries of
a connected pseudo-Riemannian manifold (M, ). For m € M, let B,, € SBF(g)
be the pullback of 4,, by the differential g — T,,M at e of the orbit map g —
gm: G > M. If V C g is a subspace and if m € M, then V is isotropic at
m if V is B,-isotropic, i.e., By,|V is zero. If V C g is a subspace, then V is
somewhere isotropic if there exists m € M such that V isotropic at m. For
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m € M, let G,, := Stabg(m) and let g,, denote the Lie algebra of G,.

Define E,,: G = M by Ep.(g) = gm and let ep,: g = T M be the differential
at 1g of E,,. Let By, := e}, (Ym), so By, is a symmetric bilinear form on g.

For X € g, let X5 be the vector field on M corresponding to X. For X € g
and m € M, let X, := (XuM)m € T:nM denote the value of X at the point m.

3. Nonproper isometric actions

The results in this section are essentially due to Kowalsky.

LEMMA 3.1: Let W; and X; be convergent sequences in g and let Y, Z € g. Let
gi be a sequence in G, let m; be a convergent sequence in M and let m € M.
Assume that g;m; — m in M. Assume that {(Ad g;)W;}; goes to infinity in g,
but converges in direction to Y. Assume that (Adg;)X; does not converge to
zero in g, and converges in direction to Z as i — oo. Then B, (Y, Z) = 0.

Proof: For all i, let Y; := (Ad g;)W; and let Z; := (Ad ¢;)X;. Choose a sequence
t; in the interval (0,00) such that Y;/t; = Y. Choose a sequence u; in (0, 00)
such that u;Z; — Z.

Since Y; — oo, it follows that t; — oo in the interval (0, 00). Since Z; does not
converge to zero, u; does not approach oo in the interval (0,00). Passing to a
subsequence, we may assume that u; is bounded above. Choose K € (0, o0) such
that, for all 7, u; < K.

Now Bg,m, (Yi/ti,uiZ;) = Bm(Y, Z), so it suffices to show that

(ui/t;)|Bg,m,(Yi, Z;)] = 0.

Since ¢; — oo and since, for all 7, we have u; < K, we conclude that u;/t; — 0.
It therefore suffices to show that By, (Y;, Zi) is bounded.
For all 7, we have

Bg,'m, (}/u Zt) = Bmi ( (Adgi)_l}/ia (Ad gi)-lZi )
= B, (W;, X5).

Since m;, W; and X; are all convergent, it follows that By, m,(Y;, Z;) is bounded,
as desired. |

COROLLARY 3.2: Let {X}}s,...,{Xk}: be k convergent sequences in g and let
Y!,...,Yk ¢ g. Let g; be a nonproper sequence in G. Assume, for all j €
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{1,...,k}, that {(Adg;) X7}, is divergent in g, but converges in direction to Y7.
Then the span of Y!,...,Y* is somewhere isotropic.

Proof: Choose a convergent sequence m; in M and m € M such that g;m; —» m.
By Lemma 3.1, for all 5,5’ € {1,...,k}, we have

Bm(Y?, YT ) =0.
Thus the span of Y?,...,Y* is B,,-isotropic. [ |

COROLLARY 3.3: Let S C g be a subset. Let g; be a nonproper sequence in G.
Assume, for all X € S, that (Adg;)X — oo in g. Assume, for all X € S, that
{(Ad g;) X }; converges in direction to a vector Yx € g as i — co. Then the span
of {Yx | X € S} is somewhere isotropic.

Proof: Choose a positive integer k and X?,..., X* € S such that the span of
Yx1,..., Yx« is the same as the span of {Yx | X € S}. We wish to show that the
span of Yxi,...,Yxs is somewhere isotropic.

For all 4, for all j € {1,...,k}, set X/ := X7 and Y7 := Yx,. The result now
follows from Corollary 3.2. ]

COROLLARY 3.4: Let S C g be a subset. Let g; be a nonproper sequence in G.
Assume, for all X € S, that (Adg;)X — 0 in g. Then the span of S is somewhere
isotropic.

Proof: Choose a positive integer k and Y?,...,Y* € § such that the span of
Y!,...,Y¥ is the same as the span of S.

For all j € {1,...,k}, we have (Adg;)Y? — 0 as i - oo. By passing to a
subsequence, we may assume, for all j € {1,...,k}, that {(Ad g;)Y?}; converges
in direction.

For all j € {1,...,k}, choose a sequence {t{}‘ in the interval (0, 00) such that
the sequence {t/(Ad g;)Y7}; converges to a nonzero vector X7 in g; then t! — co
in the interval (0, 00).

For all j € {1,...,k}, for all ¢, let X} := t{(Adg;)Y7. For all j € {1,...,k},
we know that X7 — X7 # 0 as i = oo.

For all j € {l,...,k}, for all i, we have (Adg;*)(X7) = t]YJ. So, for
j € {1,...,k}, the sequence {(Adg; 1)(X,-j )}i goes to infinity, but converges
in direction to Y7. The result follows from Corollary 3.2. ]

Recall that n}(g, a) is defined in §2.
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LEMMA 3.5: Assume that G is a connected semisimple Lie group with finite
center. Let a be a maximal split torus in g. If the action of G on M is nonproper,
then there exists Ag € a\{0} such that n}o(g, ) Is somewhere isotropic.

Proof: Let A the the connected subgroup of G corresponding to a, and let K be
a maximal compact subgroup of G. Using the Cartan decomposition G = KAK,
we see that any nonproper sequence in G has a bounded perturbation which is
contained in A. A bounded perturbation of a nonproper sequence has a nonproper
subsequence, so there is a nonproper sequence {a;}; in A.

For each 4, choose A; € a such that exp(4;) = a;. Passing to a subsequence,
we assume that A; converges in direction to A € a\{0}.

The result now follows from Corollary 3.3, with S :=J aerh, Sa- |

4. Isotropic subspaces of g
Fix mg € M. Let Ey := Ep, and let eg 1= ep,,.
LEMMA 4.1: IfV C g is a subspace isotropic at mg € M, then gn,, contains a

codimension one subspace of V.

Proof: Since V is By,,-isotropic, it follows that ep(V') is isotropic in Tpn, M, and
therefore has dimension at most one. Thus the kernel of ey|V has codimension
at most one in V, as desired. [ |

LEMMA 4.2: If X € gp,, then

[(adg X)(8)] N [(adg X) ™" (8mo)]

is isotropic at myg.

Proof: Fix Y € [(adg X)(g)] N [(adg X)~(gmo)]. We wish to show that
B, (Y,Y) = 0.

AsY € (adg X)(g), fix W € g such that Y = (adg X)W = [X, W]. Since X €
Omo, We have By, (X, W],Y) + B, (W, [X,Y]) = 0. Since Y € (adg X) ™ (gm, ),
we get [X,Y] = (ady X)Y € gm, C ker(Bp,). Then

Bmo (Yv Y) = Bmo([Xv W]vY) = "‘Bmo (Wv [X> Y]) =0. i
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5. Actions of SL,(R) x R*

Fix an integer n > 3. Assume that G = SL,(R) x R*. Assume that (M, ) is
Lorentz. Assume that G acts nonproperly on M. (We will eventually show that
this is impossible.)

Let K := SO(n). Let A be the maximal split torus in SL,,(R) consisting of
n X n diagonal matrices with positive diagonal entries and determinant one.

LEMMA 5.1: The action of A x R* on M is nonproper.

Proof: As SL,(R) = KAK, we get G = K(Ax R")K. So any sequence in G
has a bounded perturbation in A x R*. A bounded perturbation of a nonproper
sequence has a nonproper subsequence. |

LEMMA 5.2: Let X € sl (R)\{0} and let v € R*. Let mp € M. Assume that
every row of X vanishes except the first. Assume that every entry of v vanishes
except possibly the first. Then X + v ¢ gm,-

Proof: Assume, for a contradiction, that X + v € gp,.

Let X : R®* — R" denote the endomorphism corresponding to X. Because
every entry of v vanishes except the first, because every row of X vanishes except
the first and because X # 0, choose w € R" such that Xw =v. Then

(Adw)(X +v) = (Adw)X) +v =X + [w, X]+ v
=X-[X,wl+v=X-Xw+v
=X-v+v=2X.

Replacing mg by wmg and replacing X + v by (Ad w)(X + v), we may assume
that v = 0.

Then H := {exp(tX)|t € R} C Gnm,. As H is a noncompact subgroup of
SL,(R), we conclude that the SL,(R) action on M is nonproper. As n > 3, this
contradicts {Kowalsky96]. ]

LEMMA 5.3: The action of R* on M is nonproper.

Proof: By Lemma 5.1, there exists a nonproper sequence g; in A x R*.

For all ¢, choose a; in A and v; in R™ such that g; = a;v;.

If {a;} has a convergent subsequence, then after passing to this subsequence
and making a bounded perturbation we conclude that v; is a nonproper sequence;
this would imply that R" is nonproper on M, and we would be done. We therefore
assume that a; — oo in A, and aim for a contradiction.
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For each i, for each j € {1,...,n}, let af be the (j, 7) entry of a; and let v{ be
the jth entry of v;; by definition of A, we have af > 0.

For all j,k € {1,...,n}, let Ejx denote the matrix with a one in the (j, k)
entry and zeroes everywhere else and let u; denote the vector in R* with a one
in the jth entry and zeroes everywhere else.

Reordering coordinates, we may assume that a! — oo and a? — 0.

If a3 — 0o, then both (Ad g;)u1 = alu; and (Ad g;)uz = aus go to infinity and
converge in direction to u; and us, respectively. By Corollary 3.3, we conclude
that the span Ru; + Ruj is somewhere isotropic. By Lemma 4.1, a codimension
one subspace in Ru; + Rusz is contained in the stabilizer of some point, so R”
acts nonproperly and we are done.

We assume then that a does not go to infinity. Passing to a subsequence, we
may assume that a? is bounded.

For all i, we have (Ad g;)E12 = (a}/a?)Ey2 — alv}u,, which, after passing to a
subsequence, converges in direction. Choose X € RE;2 and u € Ru; such that
(Ad g;) E12 converges in direction to X + u.

Similarly, for all 4, we have (Adg;)E13 = (al/a})E13 — alv?

;v uy, which goes
to infinity, and, after passing to a subsequence, converges in direction. Choose
Y € RE;3 and v € Ru; such that (Ad ¢;)F3 converges in direction to Y + v.

We consider first the case where X # 0. Because F;5 and E,;3 are linearly
independent, X +u and Y + v are linearly independent in si,(R) x R™. It follows
from Corollary 3.3 and Lemma 4.1 that we can choose my € M and s,t € R such
that s(X + u) + t(Y +v) € gm,\{0}. Let Z := sX +tY and w := su +tv.

Then Z+w € gm,\{0} and Z € RE,; +RE;3 and w € Ru,. So all but the first
row of Z vanishes and all but possibly the first entry of w vanishes. In this case,
by Lemma 5.2, we must have Z = 0, and obtain a nontrivial (hence noncompact)
stabilizer for the R™-action. Thus R"™ acts nonproperly, as desired, provided that
X #0.

A similar argument will work in the case where Y # 0. We may therefore
assume that X =Y = 0.

Since (a}/a?)E13 — alvu, converges in direction to Y +v = v € Ruy, it follows
that (al/ad)/(a}v?) — 0.

As X = 0, it follows that X + u = u € Ruy. So (Adg;)E:2 converges in
direction to u;.

Now, for all i, we have (Ad g;)Es3 = (a?/ad) Ea3 ~ a?vlus,, and, since

(af/a})/(afv]) = (a5 /ad)/(asv]) = 0,

we see that (Ad g;)(F23) converges in direction to us.
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We therefore conclude, from Corollary 3.3 (with S := {E\3, E23}), that the
span of u; and u, is somewhere isotropic.

By Lemma 4.1, this implies that a noncompact subgroup of R* stabilizes some
point of M. Thus R* acts nonproperly on M. ]

6. Codimension one stabilizers in K"

Fix an integer n > 2. Assume that G = SL,(R) x R®. Assume that (M,~) is
Lorentz. Assume that R™ acts nonproperly on M. (We will eventually show that
this is impossible.)

LEMMA 6.1: The subalgebra R" of g is somewhere isotropic.

Proof: By assumption, there is a nonproper sequence v; in R*. Fix a norm on
R". Choose sequences {w;} in the unit sphere of R* and {¢;} in (0, 00) such that
t; — oo and such that v; = t;w;. Passing to a subsequence, we may assume that
there exists wo, on the unit sphere of R” such that w; — weo.-

For all X € sl,(R), let X : R® = R be the corresponding endomorphism; we
then have

(Adv))X = X + [vi, X] = X — Xv; = X — t;(Xw;).

For all X € P := {X € sl,(R)] Xwe # 0}, we conclude that the sequence
{(Adv;)X }; goes to infinity, but converges in direction to X weo.

Note that R" is the span of {Xwe, | X € sl.(R)}, and therefore is also the
span of S := {Xwe | X € P}. Thus, by Corollary 3.3, we conclude that R™ is
somewhere isotropic, as desired. ]

7. Some representation-theoretic results

Roughly speaking, the object of this section is to show that the Lie algebra
s0(1,d — 1) x R? does not contain sly(R) x R? as a subalgebra. More precisely,
the following lemma, together with Lemma 7.2, shows that there is no nonzero
linear map from sl(R) x R? to so(1,d — 1) x R? that preserves the Lie bracket
of elements of sl3(R) with elements of R2.

LEMMA 7.1: Let b and b be Lie algebras and let W C b be a subspace that
is not contained in any proper Lie subalgebra of b. Let ¢: W — b be a linear
map. Let by denote the smallest Lie subalgebra of h that contains ¢(W). Let
V be a vector space, and let p: b — gl(V') be a representation. For all X € b,
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let X := p(X): V = V be the endomorphism corresponding to X. Define

:= p(b) C gl(V). Let ¥: V — b be a linear map. Assume, for all X € W,
(7.1) [6(X), (V)] = $(XU).

1. if p: b — gl(V) is irreducible and if 1 # 0, then ¥: V — b is injective;

2. if % is injective, then b is a Lie quotient of by, i.e., there exists a surjective
Lie algebra homomorphism o: o — b; and

3. if ¥ is injective and if b is semisimple, then there exists a Lie algebra
homomorphism ¢': b — b such that, for all X € b, for all U € V, we have

(7.2) [¢'(X), »(U)] = %(XU).

Proof of Lemma 7.1: Proof of 1: Assume that p is irreducible and ¢ # 0.
Suppose Uy € V and 9(Uy) = 0. By (7.1), we conclude, for all X € b, that
(p(X))Uy = XUy € ker(¢). Since p: b — gi(V) is irreducible, the linear span of
{(p(X))Up| X € b} is either 0 or V. Since ¥ = 0, we conclude that Uy = 0.

Proof of 2: We now assume that ¢ is injective.

Let W := ¢(W). Then no proper Lie subalgebra of by contains W. Let
V= (V). Let W := p(W).

The map 3: V — V is an isomorphism of vector spaces and therefore induces
an isomorphism ¥: gi(V) — gl(V) of Lie algebras. Then, for all X € gl(V), for
all U € V, we have

(7.3) [T (V)] = $(XV).

By (7.1), we know, for all X € W, that ady(¢(X)): h = b preserves V. From
(7.1) and (7.3), we get

(7:4) ady(¢(X))|V = ¥(X).

Let ny (V) denote the normalizer in h of V. Then ng(V) is a Lie subalgebra of
b and, from (7.1), it follows that W C ny(V). Since no proper Lie subalgebra of
ho contains W, it follows that ho C ngy(V).

Define 7: ny(V) — gl(V) by 7(Y) = (ady Y)|V. Then 7 is a Lie algebra
homomorphism.

By (7.4), we conclude, for all X € W, that 7(¢(X)) = ¥(X). Thus 7(W) =
(W), which implies that W C 7~(¥(b)). Since no proper Lie subalgebra of b
contains W, it follows that ho C 7=1(¥(b)), which implies that (o) C ¥(b).
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Since U (p(W)) = U(W) = 7(W) C 7(ho), we conclude that

W C p~ (¥ (7 (ho)))-

By assumption, no proper Lie subalgebra of b contains W, so

b C (¥ (7 (ho)))-

Then ¥(b) = ¥(p(b)) C 7(ho). We have already established that 7(ho) C ¥(b), so
7(ho) = ¥(b). It follows that (¥~Lo7)(ho) = b,50 0 := (¥~ 'o7)|ho : ho — gl(V)
is the desired map.

Proof of 3: We now assume that 1 is injective and b is semisimple.

Let o: ho — b be the surjective homomorphism constructed above. As b is
semisimple, Whitehead’s Lemma implies that p: b — b factors through o, i.e.,
that we can find a Lie algebra homomorphism ¢’: b = ho C h such that cod’ = p.

Because 7)o = ¥ oo and o 0 ¢' = p, it follows, for all X € b, that

[ady (¢ (X)]IV = 7(¢'(X)) = (o (¢'(X))) = T(p(X)) = ¥(X).

Therefore, for all X € b, for all U € V, we have

[#'(X), ¥(U)] = [ady (¢ (X)) (V)] = (LX) (V)] = $(XV),

as desired. [ |

Note that the significant difference between (7.1) and (7.2) is that ¢: W — b
is simply a linear map, whereas ¢': b — b is a Lie algebra homomorphism. The
main content of (7.2) is that p: b — gl(V) is isomorphic to a subrepresentation
of ady o¢’: b — gl(h). Thus, (3) of Lemma 7.1 asserts that if ¢ is injective, if
b is semisimple and if p|W is isomorphic to a subrepresentation of (ady 0¢)|W,
then W can be replaced by the Lie algebra it generates, and ¢ can be replaced
by a Lie algebra homomorphism. Even if b is not semisimple, we still get some
information from (2), namely that b is a subquotient of h.

The essential content of the next lemma is that sly(R) x R? is not a Lie sub-
algebra of so(1,d — 1) x R%.

LEMMA 7.2: Let d > 1 be an integer. Let b = so(l,d — 1) x R*. For all
X € sly(R), let X: R? — R? denote the linear map corresponding to X. Assume
that ¢: slo(R) — b is a Lie algebra homomorphism and that y: R? — b is
a nonzero linear map. Then there exist X € sly(R) and U € R? such that

[8(X), ¥(U)] # »(XU).
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Proof: Assume for a contradiction that, for all X € sl(R) and U € R2, we have
(7.5) [#(X), w(U)] = $(XV).

Since 9 is nonzero, sl;(R) is simple, and the standard representation of slz(R)
on R? is irreducible, we conclude that both ¥ and ¢ are injective. Thus the
standard representation of sly(R) on R? is a subrepresentation of ady, o¢: sly(R) —
gl(h). Since so(1,0) = {0} and so(1,1) are both Abelian, we conclude that d > 3.

Let b := 9(sl2(R)). Using (7.5) and the irreducibility of the standard repre-
sentation of sl5(R), we conclude that ¢ # 0. Since slz(R) is simple, ¢: sl;(R) — b
is a Lie algebra isomorphism.

Define Q: R* = R by Q(z1,...,%4) = 22124 + 75 + -+ + z5_,. We may
assume that § = s0(Q) x R%. Because b is semisimple, there is an automorphism
A: b — b such that A(b) C so(Q). Replacing b by A(b), ¢ by Ao ¢ and ¢ by
A o9, we may assume that b C s0(Q).

Let a be the maximal split torus in so(Q) consisting of all diagonal matrices
in 50(Q). Let ao be the maximal split torus in slz(R) consisting of all diagonal
matrices of trace zero. Then ¢(ag) is a maximal split torus in s0(Q), so there
exists an automorphism A’: h — § such that A’'(¢(ag)) = a. Replacing b by A’(b),
¢ by A’ 0 ¢ and 3 by A’ o1, we may assume that a C b and that ¢(ao) = a.

Let Jo € sl3(R) be the diagonal matrix with 1 in the (1,1) entry and with —1
in the (2,2) entry. Let J € s0(Q) be the matrix with 1 in the (1,1) entry, with
~1 in the (d,d) entry and with Os elsewhere.

Since ¢(ap) = a = RJ, we conclude that ¢(Jo) = AJ for some A € R.

We calculate that ady(J): § — b has eigenvalues 1, 0 and —1 and that
ad,(, r)(Jo): sl2(R) — slx(R) has eigenvalues 2, 0 and —2.

Since the representation ady o¢: sl2(R) — gl(h) contains both ad,(, gy and the
standard representation of sI;(R) on R? as subresentations, we conclude that
ady(¢(Jo)) has nontrivial eigenspaces with eigenvalues 2, 1, 0, —1 and 2. This
contradicts the fact that ady(J) has eigenvalues 1, 0 and —1. |

8. Jets of vector fields of isometric actions

LEMMA 8.1: Let g and h be quadratic differentials near the origin in a vector
space, and let X and Y be vector fields near the origin. Assume that g and h
agree to order one at zero and that X and Y agree to order one at zero. Then
Lxg — Lyh vanishes at zero.
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Proof: Since g and h agree to order one at zero, Lx(g — h) vanishes at zero, so
it suffices to show that Lxh = Ly h at zero.
Fix vector fields Z and W near zero. We wish to show that

(Lxh)(2,W) = (Lyh)(Z,W)
at zero. Since X and Y agree to order one at zero, we get
X(h(Z,W)=Y(R(Z,W)) and LxZ=LyZ and LxW =LyW

at zero. As (Lxh)(Z,W) = X(h(Z,W)) — h{(LxZ,W) — h(Z,LxW) and
(Lyh)(Z,W) =Y (R(Z,W))—h(Ly Z,W)—h(Z, Ly W), the result follows. ]

Recall that (M, ) is a pseduo-Riemannian manifold.

LEMMA 8.2: Let mg € M. Let N be a neighborhood of zero in Ty, M such that
€XPy,, |V is a diffeomorphism onto a neighborhood My of mo. Let 4 := expy, (7).
Let ¥ denote the flat pseudo-Riemannian metric on Ty, M corresponding to the
inner product ym, on T, M. Then 4 and ¥ agree to order one at zero.

Proof: Fix X,Y € To(Tm,M). Let X,Y € Tm,M be the corresponding
elements, under the identification of To(Tm, M) with Ty, M. Then

:Y(X’Y) = 7(X7 ) —_—TY—mo(X’Y)'

Thus 4 = 7 at zero.

Fix vector fields X,Y,Z in T;,, M defined near zero. It now suffices to show
that (Lz9)(X,Y) = (Lzg)(X,Y) at zero.

Since 4 = 7 at zero, we have 4(LzX,Y) = J(LzX,Y) at zero and 4(X, LzY)
=7%(X,LzY) at zero. Now

(LZ’?)(Xv Y) = Z(‘?(X’ Y)) - ’?(LZXs Y) - ’?(X) LZY)a
and (Lz7)(X,Y)=Z(3(X,Y)) - ¥(LzX,Y) - ¥(X, LzY).
It therefore suffices to show that Z(%(X,Y)) = Z(7(X,Y)) at zero.
Let ¥ be the Levi-Civita connection on Ty, M defined near zero corresponding

to 4 and let V be the Levi-Civita connection on Ty, M corresponding to 7. We
now wish to show that

Y(VzX,Y)+45(X,VzY) =5(VzX,Y) +5(X,VzY)

at zero.
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Since 4 = 7 at zero, we have 4(VzX,Y) = 5(VzX,Y) at zero and (X, VzY)
= (X ,VzY) at zero. It therefore suffices to show that VzX = VX at zero
and VzY = VY at zero.

Let n:=dim M. Let ey,..., e, be a basis for T,,,, M and let Ey,..., E, be the
corresponding constant vector fields on Ty, M.

By a result that appears in a variety of references (e.g., [KN63, Proposition 8.4,
p. 149, in Chapter III]), for all ¢,j € {1,...,n}, we have that vE_EJ- vanishes
at zero. Moreover, since ¥ is constant and hence flat, it follows, for all 7,5 €
{1,...,n}, that Vg, E; = 0.

Fix i,j € {1,...,n} and fix two functions f,g on T,,, M. Then @fE,.(gE]-) =
f(Ei9)E; = V;E,(gE;) at zero.

For any vector field R on T,,, M, there exist functions hy,...,h, on T,y M
such that R =" h;E;.

So, for any two vector fields P, Q on Ty, , M, we have v pQ = VpQ at zero. In
particular, @ZX =VzX at zero, and @ZY = VY at zero, as desired. |

The next seven lemmas follow from straightforward computations and from
Taylor’s Theorem.

LEMMA 8.3: Let X be a vector field defined near zero in a vector space. Let f
be a function defined near zero vanishing to order k at zero. Then fX vanishes
to order k at zero.

LEMMA 8.4: Let S and T be two vector fields defined near zero in a vector space.
If S and T vanish at zero, then [S,T] vanishes at zero.

LEMMA 8.5: Let S, T and U be vector fields defined near zero in a vector space.
If S and T agree to order one at zero and U vanishes at zero, then [S,U] and
[T, U] agree to order one at zero.

LEMMA 8.6: Let X be a vector field defined on a neighborhood of zero in a real
vector space V. Then for any k > 0, there exist vector fields Xg,...,Xx and R
on V such that X; is homogeneous of degree i, R vanishes to order k at zero, and
X =Xo+--++ Xk + R on a neighborhood of zero.

LEMMA 8.7: Let C, C', L and L' be vector fields defined near zero in a vector
space. Assume that C and C' are constant and that L and L' are linear. Then
1. [L',C] is constant and [L', L] is linear; and
2. if C+ L and C' + L' agree to order one at zero, then C =C' and L = L',
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LEMMA 8.8: Let L be a linear vector field in a vector space. Let B be a constant
quadratic differential. Then L1 B is constant.

LEMMA 8.9: Let V be a vector space with a quadratic form B. Let B denote the
constant quadratic differential on V corresponding to B. Let C and L be vector

fields, such that C is constant and L is linear. Assume that L¢,p(B) vanishes
at zero. Then L € so(B).

Recall that G is a connected Lie group acting locally faithfully by isometries
of a pseudo-Riemannian manifold (M,v). Fix mg € M. Let N be a starlike
neighborhood of 0 in Tip M such that exp,, is defined on N and such that
€XPyy,, is a diffeomorphism of N onto a neighborhood Mp of mg in M.

Recall that G, := Stabg(mg). Let ¥ := exp, (7). Let ¥ denote the flat
Lorentz metric on N coming from the Minkowski form ~p,,.

For X € g, recall that X, is the vector field on M corresponding to X. For
X eglet X = (exp,t)e(Xp). For X € g, let Xe, X1, XQ and Xg be vector
fields on T,,, M such that X¢ is constant, Xy is linear, X is quadratic, Xg
vanishes to order two at zero and X = X¢ + XL+ XQ + XR.

LEMMA 8.10: Assume that the action of G on M is by isometries.
1. For all X € g, we have X[ € 50(Ym,)-
2. ForallU € g, ifUc =0, then U = Uy.
3. For all X,U,T € g, ifUc =0 and if T = [X,U], then

TC = [Xc,f][,} and TL = [XL,UL].

Proof of Lemma 8.10: Proof of 1: By definition of Xc and X1, we know that
X and X¢c + X, agree to order one at zero. By Lemma 8.2, we see that 4 and ¥
agree to order one at zero. By Lemma 8.1, since L % vanishes on N, we conclude
that LXC+XL7 vanishes at zero. Thus, by Lemma 8.9, XL € $0(Ymg)-

Proof of 2: Since Uc = 0, it follows that Ups vanishes at mg. So, for all t € R,
we have (exptU)mg = my. i.e., exptU € Gpm,.

Naturality of the Riemannian exponential map implies that U is the restriction
to N of the vector field of the flow

(t,v) = (exptU)(v): R x TypoM = Ty M.

Since this flow is a flow by linear transformations, U is linear, i.e., U = Ur.
Proof of 3: By definition of Xc and X, we know that X and X¢ + XL agree
to order one at zero. Similarly, T and Tc + T1, agree to order one at zero.
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Since Uc = 0, it follows that U vanishes at zero. By Lemma 8.5,
(X + X, 0] and [X,0]
agree to order one at zero. Because T = [X, U], we have T = [X,U]. Thus
[Xc+ X1, 0] and To+1Ty

agree to order one at zero.
By (2) of Lemma 8.10, U = Uy,. Thus

[XC + XL,U] = [Xc,(}[,] + [XL>0L]-

It follows that
[Xc, 0[,] + [XL, UL] and Tc + TL

agree to order one at zero.

By (1) of Lemma 8.7, [X¢, U] is constant and [X[, U] is linear. We conclude
from (2) of Lemma 8.7 that To = [Xc, OL] = [X¢,UL] and that Ty = [X'L, U'L] =
(XL, OL). ]

9. Restriction on stabilizers

Let n > 2 be an integer.

Assume that G = SL,(R) x R® and that (M,~) is Lorentz. Recall that G
acts locally faithfully by isometries of (M, ). Let mg € M. Recall that G,,, :=
Stabe(mo). For all X € sl,(R), let X: R* — R denote the corresponding linear
map.

Fix a starlike neighborhood N of 0 € T, M such that exp,, is defined on N
and exp,,, is a diffeomorphism of N onto a neighborhood My of mg in M.

For all X € g, let X = (expyl).(Xm).

Let 4 := expp,,(g9). Let ¥ denote the flat Lorentz metric on N coming from
the Minkowski form vy, .

By Lemma 8.6, we can, for each X € sl,(R) x R®, choose vector fields Xc,
Xy and X r on Ty, M such that Xc is constant, Xy is linear, X R vanishes to
order one at zero, and X = Xc+ XL+ Xg.

In Lemma 9.1 below, note that ¢ is only a linear map; there is no reason to
believe that it is a Lie algebra homomorphism.
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LEMMA 9.1: Suppose that R® C G,,- Then there exist linear maps ¢: sl,(R) —
50(Ym,) and ¥: R® — so0(ym,) such that v is injective and, for all X € sl,(R),
for all U € R*, we have

[#(X), $(U)] = $(XV).
Proof: Define ¢: sl,(R) — gl(Trm, M) and 9: R* — gl(Ty,, M) by

¢(X)=Xr and 9(U)="Ur.

By (1) of Lemma 8.10, ¢(sln(R)) C 50(Ym,) and $(R"™) C s0(ym,)-

For all U € R", we have U € gy, s0, by (1) of Lemma 8.10, Uc =0. By (2)
of Lemma 8.10, we know that 3(U) = U.

If (U) = 0, then U = 0, so the Killing vector field Ups vanishes on My. If
a Killing vector field on a connected pseudo-Riemannian manifold vanishes on a
nonempty open set, then it vanishes everywhere. We conclude, for all U € R*,
that if ¢(U) = 0, then Ups = 0 which implies (by local faithfulness of the action)
that U = 0. Therefore ¢: R® — s50(v,,) is injective.

Fix X € sl,(R) and U € R" and let T := [X,U] = XU. Then (3) of Lemma
8.10 implies that [X' L, U L= TL, which proves the Lemma. |

LEMMA 9.2: Assume that n = 2. Then R? cannot be contained Gy,

Proof: Assume for a contradiction that R2 C G,,,. Let p be the standard
representation of sly(R) on V := R2. Set W := sl5(R) and b := 50(ym,). Let ¢
and ¥ be as in Lemma 9.1.

Let d := dim M. Then b is isomorphic to so(1,d — 1). Choose ¢' as in (3) of
Lemma 7.1. Replacing ¢ by ¢’ in the statement of Lemma 7.2, we arrive at a
contradiction. |

10. Conclusion

THEOREM 10.1: Let n > 3 be an integer. Let G = SL,(R) x R* act locally
faithfully by isometries of a connected Lorentz manifold M. Then the action of
G on M is proper.

Proof: Suppose that the G-action on M is nonproper. We wish to obtain a
contradiction.

By Lemma 6.1, there exists mg € M such that R" is isotropic at mg. By
Lemma 4.1, we conclude that the stabilizer G, in G of mg contains a codimen-
sion one subgroup of R"; as n > 3, we see that G, contains a two-dimensional
subspace S of R™.
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Let S’ be any vector space complement to S in R*. Then SL(S) injects into
SL(S) x SL(S'), which, in turn, injects into SL,(R). Further, S is a subset of
R". These injections of SL(S) into SL,(R) and of S into R® combine to create
an injection of SL(S) x S into G.

Since S is two-dimensional, SL(S) x S is isomorphic to SLy(R) x RZ. We
therefore obtain an injective homomorphism SL;(R) x R? — G such that R?
maps onto S. Then SL,(R) x R? acts on M and there exists mg € M such that
R? C G-

This contradicts Lemma 9.2. 1
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